首页 综合 > 正文

python实现堆(最大堆、最小堆、最小最大堆) 当前观察

2023-04-03 14:31:55 来源:腾讯云


(资料图)

1. 最大堆

class MaxHeap:    def __init__(self):        self.heap = []    def parent(self, i):        return (i - 1) // 2    def left_child(self, i):        return 2 * i + 1    def right_child(self, i):        return 2 * i + 2    def get_max(self):        if not self.heap:            return None        return self.heap[0]    def insert(self, item):        self.heap.append(item)        self._heapify_up(len(self.heap) - 1)    def extract_max(self):        if not self.heap:            return None        max_item = self.heap[0]        last_item = self.heap.pop()        if self.heap:            self.heap[0] = last_item            self._heapify_down(0)        return max_item    def _heapify_up(self, i):        while i > 0 and self.heap[i] > self.heap[self.parent(i)]:            self.heap[i], self.heap[self.parent(i)] = self.heap[self.parent(i)], self.heap[i]            i = self.parent(i)    def _heapify_down(self, i):        max_index = i        left = self.left_child(i)        if left < len(self.heap) and self.heap[left] > self.heap[max_index]:            max_index = left        right = self.right_child(i)        if right < len(self.heap) and self.heap[right] > self.heap[max_index]:            max_index = right        if i != max_index:            self.heap[i], self.heap[max_index] = self.heap[max_index], self.heap[i]            self._heapify_down(max_index)if __name__ == "__main__":    max_heap = MaxHeap()    max_heap.insert(1)    max_heap.insert(2)    max_heap.insert(0)    max_heap.insert(8)    print(max_heap.get_max())

2. 最小堆

class MinHeap:    def __init__(self):        self.heap = []    def parent(self, i):        return (i - 1) // 2    def left_child(self, i):        return 2 * i + 1    def right_child(self, i):        return 2 * i + 2    def get_min(self):        if not self.heap:            return None        return self.heap[0]    def insert(self, item):        self.heap.append(item)        self._heapify_up(len(self.heap) - 1)    def extract_min(self):        if not self.heap:            return None        min_item = self.heap[0]        last_item = self.heap.pop()        if self.heap:            self.heap[0] = last_item            self._heapify_down(0)        return min_item    def _heapify_up(self, i):        while i > 0 and self.heap[i] < self.heap[self.parent(i)]:            self.heap[i], self.heap[self.parent(i)] = self.heap[self.parent(i)], self.heap[i]            i = self.parent(i)    def _heapify_down(self, i):        min_index = i        left = self.left_child(i)        if left < len(self.heap) and self.heap[left] < self.heap[min_index]:            min_index = left        right = self.right_child(i)        if right < len(self.heap) and self.heap[right] < self.heap[min_index]:            min_index = right        if i != min_index:            self.heap[i], self.heap[min_index] = self.heap[min_index], self.heap[i]            self._heapify_down(min_index)

3. 最小-最大堆

最小-最大堆的性质是:树中偶数层的每个节点都小于它的所有后代,而树中奇数层的每个节点都大于它的所有后代。

用途 双端优先级队列

class MinMaxHeap:    def __init__(self):        self.heap = []    def parent(self, i):        return (i - 1) // 2    def left_child(self, i):        return 2 * i + 1    def right_child(self, i):        return 2 * i + 2    def get_min(self):        if not self.heap:            return None        return self.heap[0]    def get_max(self):        if not self.heap:            return None        if len(self.heap) == 1:            return self.heap[0]        if len(self.heap) == 2:            return self.heap[1] if self.heap[1] > self.heap[0] else self.heap[0]        return self.heap[1] if self.heap[1] > self.heap[2] else self.heap[2]    def insert(self, item):        self.heap.append(item)        self._heapify_up(len(self.heap) - 1)    def extract_min(self):        if not self.heap:            return None        min_item = self.heap[0]        last_item = self.heap.pop()        if self.heap:            self.heap[0] = last_item            self._heapify_down_min(0)        return min_item    def extract_max(self):        if not self.heap:            return None        max_item = self.get_max()        max_index = self.heap.index(max_item)        self.heap[max_index] = self.heap[-1]        self.heap.pop()        if max_index < len(self.heap):            self._heapify_down_max(max_index)        return max_item    def _heapify_up(self, i):        if i == 0:            return        parent = self.parent(i)        if self.heap[i] < self.heap[parent]:            self.heap[i], self.heap[parent] = self.heap[parent], self.heap[i]            self._heapify_up_max(parent)        else:            self._heapify_up_min(i)    def _heapify_up_min(self, i):        grandparent = self.parent(self.parent(i))        if i > 2 and self.heap[i] < self.heap[grandparent]:            self.heap[i], self.heap[grandparent] = self.heap[grandparent], self.heap[i]            self._heapify_up_min(grandparent)    def _heapify_up_max(self, i):        grandparent = self.parent(self.parent(i))        if i > 2 and self.heap[i] > self.heap[grandparent]:            self.heap[i], self.heap[grandparent] = self.heap[grandparent], self.heap[i]            self._heapify_up_max(grandparent)    def _heapify_down_min(self, i):        while True:            min_index = i            left = self.left_child(i)            if left < len(self.heap) and self.heap[left] < self.heap[min_index]:                min_index = left            right = self.right_child(i)            if right < len(self.heap) and self.heap[right] < self.heap[min_index]:                min_index = right            if i != min_index:                self.heap[i], self.heap[min_index] = self.heap[min_index], self.heap[i]                i = min_index            else:                break    def _heapify_down_max(self, i):        while True:            max_index = i            left = self.left_child(i)            if left < len(self.heap) and self.heap[left] > self.heap[max_index]:                max_index = left            right = self.right_child(i)            if right < len(self.heap) and self.heap[right] > self.heap[max_index]:                max_index = right            if i != max_index:                self.heap[i], self.heap[max_index] = self.heap[max_index], self.heap[i]                i = max_index            else:                break

在这个实现中,MinMaxHeap类代表一个min-max堆,包含一个list堆,用于存放堆中的元素。 parent、left_child 和right_child 方法分别返回节点的父节点、左子节点和右子节点的索引。 get_min 方法返回堆中的最小元素,get_max 方法返回堆中的最大元素。 insert 方法将一个元素插入到堆中并维护堆属性。 extract_min 方法从堆中移除最小元素并保持堆属性。 extract_max 方法从堆中移除最大元素并保持堆属性。

_heapify_up、_heapify_up_min、_heapify_up_max、_heapify_down_min 和 _heapify_down_max 方法用于维护最小-最大堆属性。 _heapify_up 在向堆中插入元素后调用,以确保元素位于正确的位置。 _heapify_up_min 和 _heapify_up_max 由 _heapify_up 调用以维护最小-最大堆属性。 _heapify_down_min 和 _heapify_down_max 分别被 extract_min 和 extract_max 调用,以维护 min-max 堆属性。

标签:

python实现堆(最大堆、最小堆、最小最大堆) 当前观察

最小-最大堆的性质是:树中偶数层的每个节点都小于它的所有后代,而树中奇数层的每个节点都大于它的所有后代。

2023-04-03

昆明提高“两病”用药保障水平_全球速读

记者从有关方面获悉,4月1日起,昆明市启动实施进一步提高昆明市医保参保人“两病”(高血压和糖尿病)用药保障水平新政策,全

2023-04-03

天天微资讯!年报速递|世茂服务去年收入约86亿元,毛利超19亿元

3月31日,世茂服务控股有限公司(简称“世茂服务”)发布2022年度业绩公告。公告显示,2022年,世茂服务实现收入约86 37亿元,同比增长3 5%。在

2023-04-03

2023第二季度天津河北区公租房摇号顺序是什么?-全球播报

》》》2023第二季度天津河北区公租房摇号顺序是什么?答:按照优先组家庭、租房补贴其他组家庭和非租房补贴其他组家庭分组顺序依次进行摇号。

2023-04-03

车子被追尾怎么处理?

汽车发生追尾后,处理方法可以按照如下进行:1、车辆驾驶人应当立即停车,保护现场。2、持续开启危险报警闪光灯,并在来车方向设置警告标志等

2023-04-03

焦点资讯:嘴哥回归在即?维金斯老婆晒动态:湾区有啥好Tony老师推荐吗?

维金斯老婆今日更新Instagram动态。维金斯老婆晒出了自拍,并询问湾区有没有卷发专攻的好Tony老师。维金斯老婆的Instagram定位也已经定位到了湾区

2023-04-03
x 广告
x 广告

Copyright ?  2015-2022 华东体育网版权所有  备案号:京ICP备2022016840号-41   联系邮箱:2 913 236 @qq.com